ORNL Publications on the Direct Effects of Elevated CO2

1981 | 1984 |  1986 | 1987 |  1989 | 1990 |  1991 | 1992 |  1993 | 1994 |  1995 | 1996 |  1997 | 1998 |  1999 | 2000 |  2001 | 2002 |  2003 | 2004 |  2005 | 2006 |  2007 | 2008 | 


[1] Luxmoore, R. J. 1981. CO2 and phytomass. BioScience 31: 626.


[2] Norby, R. J., R. J. Luxmoore, E. G. O'Neill, and D. G. Weller. 1984. Plant responses to atmospheric CO2 with emphasis on belowground processes. ORNL/TM-9426. Oak Ridge National Laboratory, Oak Ridge, TN.


[3] Luxmoore, R. J., R. J. Norby, and E. G. O'Neill. 1986. Seedling tree responses to nutrient stress under atmospheric CO2 enrichment. pp. 178-183 IN Proceedings, 18th IUFRO World Congress, Division Il, Vol. I. IUFRO Secretariat, Vienna, Austria.

[4] Luxmoore, R. J., E. G. O'Neill, J. M. Ells, and H. H. Rogers. 1986. Nutrient-uptake and growth responses of Virginia pine to elevated atmospheric CO2. Journal of Environmental Quality. 15:244-251.

[5] Norby, R. J., E. G. O'Neill, and R. J. Luxmoore. 1986. Effects of atmospheric CO2 enrichment on the growth and mineral nutrition of Quercus alba seedlings in nutrient-poor soil. Plant Physiology 82:83-89.

[6] Norby, R. J., J. Pastor, and J. M. Melillo. 1986. Carbon-nitrogen interactions in CO2-enriched white oak: Physiological and long-term perspectives. Tree Physiology 2:233-241.


[7] Norby, R. J. 1987. Nodulation and nitrogenase activity in nitrogen-fixing woody plants stimulated by CO2 enrichment of the atmosphere. Physiologia Plantarum 71:77-82.

[8] Norby, R. J., E. G. O'Neill, W. G. Hood, and R. J. Luxmoore. 1987. Carbon allocation, root exudation, and mycorrhizal colonization of Pinus echinata seedlings grown under CO2 enrichment. Tree Physiology 3:203-210.

[9] O'Neill, E. G., R. J. Luxmoore, and R. J. Norby. 1987. Elevated atmospheric CO2 effects on seedling growth, nutrient uptake, and rhizosphere bacterial populations of Liriodendron tulipifera L. Plant and Soil 104:3-11.

[10] O'Neill, E. G., R. J. Luxmoore, and R. J. Norby. 1987. Increases in mycorrhizal colonization and seedling growth in Pinus echinata and Quercus alba in an enriched CO2 atmosphere. Canadian Journal of Forest Research 17:878-883.


[11] Norby, R. J., and E. G. O'Neill. 1989. Growth dynamics and water use of seedlings of Quercus alba L. in CO2-enriched atmospheres. New Phytologist 111:491-500.

[12] Norby, R. J. and L. L. Sigal. 1989. Nitrogen fixation in the lichen Lobaria pulmonaria in elevated atmospheric carbon dioxide. Oecologia 79:566-568.

[13] Norby, R. J. 1989. Direct responses of forest trees to rising atmospheric carbon dioxide. pp. 243-249 IN R. G. Noble, J. L. Martin, and K. F. Jensen (eds.), Air Pollution Effects on Vegetation Including Forest Ecosystems. Proceedings of the second US-USSR Symposium; Corvallis OR, Raleigh NC, and Gatlinburg TN, September 13-25, 1988. U.S. Department of Agriculture, Forest Service, Northeastern Forest Experiment Station, Broomall, PA.


[14] Luxmoore, R. J., M. L. Tharp, and D. C. West. 1990. Simulating the physiological basis of tree ring responses to environmental changes. p. 393-401. In: R. K. Dixon, R. S. Meldahl, G. A. Ruark, and W. G. Warren (eds.), Process Modeling of Forest Growth Responses to Environmental Stress. Timber Press, Inc., Portland, Oregon


[15] Baldocchi, D. D., R. J. Luxmoore, and J. L. Hatfield. 1991. Discerning the forest from the trees: An essay on scaling canopy stomatal conductance. Agricultural and Forest Meteorology 54:197-226

[16] Luxmoore, R. J. 1991. A source-sink framework for coupling water, carbon, and nutrient dynamics of vegetation. Tree Physiology 9:267-280.

[17] Luxmoore, R. J., A. W. King, and M. L. Tharp. 1991. Approaches to scaling up physiologically-based soil-plant models in space and time. Tree Physiology 9:281-292.

[18] Mooney, H. A., B. G. Drake, R. J. Luxmoore, W. C. Oechel, and L. F. Pitelka. 1991. Predicting ecosystem responses to elevated CO2 concentrations. BioScience 41:96-104.

[19] Norby, R. J., and E. G. O'Neill. 1991. Leaf area compensation and nutrient interactions in CO2-enriched yellow-poplar (Liriodendron tulipifera L.) seedlings. New Phytologist 117: 515-528.

[20] O'Neill, E. G., R. V. O'Neill, and R. J. Norby. 1991. Hierarchy theory as a guide to mycorrhizal research on large-scale problems. Environmental Pollution 73:271-284.


[21] Norby, R. J., C. A. Gunderson, S. D. Wullschleger, E. G. O'Neill, and M. K. McCracken. 1992. Productivity and compensatory responses of yellow-poplar trees in elevated CO2. Nature 357:322-324.

[22] Wullschleger, S. D., R. J. Norby, and D. L. Hendrix. 1992. Carbon exchange rates, chlorophyll content, and carbohydrate status of two forest tree species exposed to carbon dioxide enrichment. Tree Physiology 10:21-31.

[23] Wullschleger, S. D., R. J. Norby, and C. A. Gunderson. 1992. Growth and maintenance respiration in leaves of Liriodendron tulipifera L. saplings exposed to long-term carbon dioxide enrichment in the field. New Phytologist 121: 515-523.

[24] Wullschleger, S. D. and R. J. Norby. 1992. Respiratory cost of leaf growth and maintenance in white oak saplings exposed to atmospheric CO2 enrichment. Canadian Journal of Forest Research 22: 1717-1721.


[25] Apps, M. J., W. A. Kurz, R. J. Luxmoore, L. O. Nilsson, R. A. Sedjo, R. Schmidt, L. G. Simpson, and T. S. Vinson. 1993. Boreal forests and Tundra. p. 39-53. In: J. Wisniewski and R. N. Samson (eds.), Terrestrial Biospheric Carbon Fluxes: Quantification of Sinks and Sources of CO2. Kluwer Academic Publishers, Dordrecht.

[26] Gunderson, C. A., R. J. Norby, and S. D. Wullschleger. 1993. Foliar gas exchange responses of two deciduous hardwoods during three years of growth in elevated CO2: No loss of photosynthetic enhancement. Plant, Cell, and Environment 16:797-807.

[27] Luxmoore, R.J., S.D. Wullschleger and P.J. Hanson. 1993. Forest response to CO2 enrichment and climate warming. Water, Air, and Soil Pollution 70: 309-323.

[28] Stewart, D. B., and R. J. Norby. 1991. Interactions between water stress and elevated CO2 in five eastern deciduous tree seedlings. IN, Proceedings of the Fifth National Conference on Undergraduate Research, California Institute of Technology, Pasadena, CA, March 21-23, 1991.

[29] Tschaplinski, T. J., R. J. Norby, and S. D. Wullschleger. 1993. Responses of loblolly pine seedlings to elevated CO2 and fluctuating water supply. Tree Physiology 13: 283-296.

[30] West, D. C., T. W. Doyle, M. L. Tharp, J. J. Beauchamp, W. J. Platt, and D. J. Downing. 1993. Recent growth increases in old-growth longleaf pine. Canadian Journal of Forest Research 23: 846-853.

[31] Wullschleger, S.D., W.M. Post and A.W. King. 1995. On the potential of a CO2 fertilization effect in forests: Estimates of the biotic growth factor based on 58 controlled-exposure studies. pp. 85-107. In G.M. Woodwell and F.T. Mackenzie (eds.) Biotic Feedbacks in the Global Climatic System: Will Warming Feed the Warming? Oxford University Press, New York.

[32] Wullschleger, S.D. 1993. Biochemical limitations to carbon assimilation in C3 plants - A retrospective analysis of the A/Ci curves from 109 species. Journal of Experimental Botany 44: 907-920.


[33] Cooper, L. W. and R. J. Norby. 1994. Atmospheric CO2 enrichment can increase the 18O content of leaf water and cellulose: paleoclimatic and ecophysiological implications. Climate Research 4:1-11.

[34] Curtis, P. S., E. G.O'Neill, J. A. Teeri, D. R. Zak, and K. S. Pregitzer. 1994. Belowground responses to rising atmospheric CO2: implications for plants, soil biota and ecosystem processes. Plant and Soil 165: 1-8.

[35] Gunderson, C. A. and S. D. Wullschleger. 1994. Photosynthetic acclimation of forest trees to a doubling of atmospheric CO2: a broader perspective. Photosynthesis Research 39: 369-388.

[36] Norby, R. J. 1994. Issues and perspectives for investigating root responses to elevated atmospheric carbon dioxide. Plant and Soil 165: 9-20.

[37] O'Neill, E. G. 1994. Responses of soil biota to elevated atmospheric carbon dioxide. Plant and Soil 165:55-65.

[38] Wullschleger, S. D., L. H. Ziska, and J. A. Bunce. 1994. Respiratory response of higher plants to atmospheric CO2 enrichment. Physiologia Plantarum 90: 221-229.

[39] Wullschleger, S.D., J.P. Lynch and G.M. Berntson. 1994. Modeling the belowground response of plants and soil biota to edaphic and climatic change - What can we expect to gain? Plant and Soil 165:149-160.


[40] Curtis, P. S., E. G. O'Neill, J. A. Teeri, D. R. Zak, and K. S. Pregitzer. 1995. Belowground Responses to Rising Atmospheric CO2: Implications for Plants, Soil Biota, and Ecosystem Processes. Kluwer Academic Press, Dordrecht, The Netherlands. 169 pp.

[41] Norby, R. J., E. G. O'Neill, and S. D. Wullschleger. 1995. Belowground responses to atmospheric carbon dioxide in forests. pp. 397-418, In: W. W. McFee and J. M. Kelly (eds.), Carbon Forms and Functions in Forest Soils. Soil Science Society of America, Madison, WI

[42] Wullschleger, S. D., R. J. Norby, and P. J. Hanson. 1995. Growth and maintenance respiration in stems of Quercus alba L. after four years of carbon dioxide enrichment. Physiologia Plantarum 93: 47-54.

[43] Tschaplinski, T. J., D. B. Stewart, P. J. Hanson, and R. J. Norby. 1995. Interactions between drought and elevated CO2 on growth and gas exchange of seedlings of three deciduous tree species. New Phytologist 129: 63-71.

[44] Tschaplinski, T. J., D. B. Stewart, and R. J. Norby. 1995. Interactions between drought and elevated CO2 on osmotic adjustment and solute concentrations of tree seedlings. New Phytologist 131:169-177.

[45] Norby, R. J., S. D. Wullschleger, C. A. Gunderson, and C. T. Nietch. 1995. Increased growth efficiency of Quercus alba trees in a CO2-enriched atmosphere. New Phytologist 131: 91-97.


[46] Norby, R. J. 1996. Oaks in a high CO2 world. Annales des Sciences Forestières 53: 413-429.

[47] Norby, R. J. 1996. Forest canopy productivity index. Nature 381: 564.

[48] Norby, R. J., S. D. Wullschleger, and C. A. Gunderson. 1996. Tree responses to elevated CO2 and the implications for forests. pp. 1-21 In: G. W. Koch and H. A. Mooney (eds.), Carbon Dioxide and Terrestrial Ecosystems. Academic Press, San Diego.

[49] O'Neill, E. G. and R. J. Norby. 1996. Litter quality and decomposition rates of foliar litter produced under CO2 enrichment. pp. 87-103 In: G. W. Koch and H. A. Mooney (eds.), Carbon Dioxide and Terrestrial Ecosystems. Academic Press, San Diego.


[50] Norby, R. J. 1997. Carbon cycle: Inside the black box. Nature 388: 522-523.

[51] Norby, R. J., N. T. Edwards, J. S. Riggs, C. H. Abner, S. D. Wullschleger, and C. A. Gunderson. 1997. Temperature-controlled open-top chambers for global change research. Global Change Biology 3:259-267.

[52] Ringelberg, D. B., J. O. Stair, J. Almeida, R. J. Norby, E. G. O'Neill, and D. C. White. 1997. Consequences from rising atmospheric carbon dioxide levels for the belowground microbiota associated with white oak. Journal of Environmental Quality 26:495-502.

[53] Wullschleger, S. D., R. J. Norby, J. C. Love, and C. Runck. 1997. Energetic cost of tissue construction in yellow-poplar and white oak trees exposed to long-term CO2 enrichment. Annals of Botany 80: 289-297.

[54] Wullschleger, S. D., R. J. Norby, and C. A. Gunderson. 1997. Forest trees and their response to atmospheric CO2 enrichment: A compilation of results. pp. 79-100 In: L. H. Allen, Jr., M. B. Kirkham, D. M. Olszyk, and C. E. Williams (eds.), Advances in Carbon Dioxide Effects Research. ASA Special Publication no. 61, American Society of Agronomy, Madison,WI.


[55] Edwards, N.T. and R.J. Norby. 1998. Below-ground respiratory responses of sugar maple and red maple saplings to atmospheric CO2 enrichment and elevated air temperature. Plant and Soil 206:85-97.

[56] Norby, R. J. 1998. Nitrogen deposition: A component of global change analyses. New Phytologist 139:189-200.

[57] Norby, R. J. 1998. Global change: a question of litter quality. Nature 396: 17-18.

[58] Williams, R. S., D. E. Lincoln, and R. J. Norby. 1998. Leaf age effects of elevated CO2-grown white oak leaves on spring-feeding lepidopterans. Global Change Biology 4:235-246.


[59] BassiriRad H., S. A. Prior, R. J. Norby, and H. H. Rogers. 1999. A field method of determining NH4+ and NO3- uptake kinetics in intact roots: Effects of CO2 enrichment on trees and crop species. Plant and Soil 217:195-204.

[60] Norby, R. J., S. D. Wullschleger, C. A. Gunderson, D. W. Johnson, and R. Ceulemans. 1999. Tree responses to rising CO2: implications for the future forest. Plant, Cell & Environment 22: 683-714.

[61] Peterson, A.G., Ball, J.T., Luo Y., Field C.B., Reich P.B., Curtis P.S., Griffin K.L., Gunderson C.A., Norby, R.J., Tissue, D.T., Forstreuter M.., Rey A., Vogel C.S. & CMEAL participants. 1999. The photosynthesis--leaf nitrogen relationship at ambient and elevated carbon dioxide: a meta-analysis. Global Change Biology 5:331-346.

[62] Peterson, A.G., Ball, J.T., Luo Y., Field C.B., Curtis P.S., Griffin K.L., Gunderson C.A., Norby, R.J., Tissue, D.T., Forstreuter M., Rey A., Vogel C.S. & CMEAL participants. 1999. Quantifying the response of photosynthesis to changes in leaf nitrogen content and leaf mass per area in plants grown under atmospheric CO2 enrichment. Plant, Cell and Environment 22: 1109-1119.


[63] Canadell, J., Norby, R. J., Cotrufo, M. F., and Nösberger, J., editors. 2000. Litter Quality and Decomposition Under Elevated Atmospheric CO2. Plant and Soil 224: 1-170.

[64] Carter, G. A., R. Bahadur, and R. J. Norby. 2000. Effects of elevated atmospheric CO2 and temperature on leaf optical properties in Acer saccharum. Environmental and Experimental Botany 43: 267-273.

[65] Norby R.J., T. M. Long, J. S. Hartz-Rubin, and E. G. O'Neill. 2000. Nitrogen resorption in senescing tree leaves in a warmer, CO2-enriched atmosphere. Plant and Soil 224: 15-29.

[66] Norby, R. J. and R. B. Jackson. 2000. Root dynamics and global change: seeking an ecosystem perspective. New Phytologist 147: 3-12.

[67] Norby, R. J., R. B. Jackson, and A. H. Fitter, editors. 2000. Root Dynamics and Global Change: An Ecosystem Perspective. New Phytologist Trust.

[68] Norby, R. J., editor. 2000. Atmospheric CO2 and ecosystem feedback between carbon and nitrogen cycles: synthesis of an integrated experiment. Ecological Applications 10:1-59.

[69] Williams, R. S., R. J. Norby, and D. E. Lincoln. 2000. Effects of elevated CO2 and temperature-grown red and sugar maple on gypsy moth performance. Global Change Biology 6: 685-695.


[70] Norby, R. J., K. Ogle, P. S. Curtis, F.-W. Badeck, A. Huth, G. C. Hurtt, T. Kohyama, and J. Penuelas. 2001. Aboveground growth and competition in forest gap models: An analysis for studies of climatic change. Climatic Change 51: 415-447.

[71] Norby, R. J., D. E. Todd, J. Fults, and D. W. Johnson. 2001. Allometric determination of tree growth in a CO2-enriched sweetgum stand. New Phytologist 150: 477-487.

[72] Norby R. J., M. F. Cotrufo, P. Ineson, E. G. O'Neill, and J. G. Canadell. 2001. Elevated CO2, litter chemistry, and decomposition: A synthesis. Oecologia 127: 153-165.

[73] Norby, R. J., K. Kobayashi, and B. A. Kimball. 2001. Rising CO2 - future ecosystems. New Phytologist 150: 215-221.

[74] Wullschleger S. D. and R. J. Norby. 2001. Sap velocity and canopy transpiration for a 12-year-old sweetgum stand exposed to free-air CO2 enrichment. New Phytologist 150: 489-498.

[75] Johnson, D.W., R.J. Norby, and B.A. Hungate. 2001. Effects of elevated CO2 on nutrient cycling in forests. pp. 237-252 In: D. F. Karnosky, R. Ceulemans, G. E. Scarascia-Mugnozza, and J. L. Innes (eds.), The Impact of Carbon Dioxide and Other Greenhouse Gases on Forest Ecosystems. CABI, Wallingford, UK

[76] Karnosky, D. F., Gielen, B., Ceulemans, R., Schlesinger, W. H., Norby, R. J., Oksanen, E., Matyssek, R. and Hendrey G. R. 2001. FACE systems for studying the impacts of greenhouse gases on forest ecosystems. pp. 297-324 In: D. F. Karnosky, R. Ceulemans, G. E. Scarascia-Mugnozza, and J. L. Innes (eds.), The Impact of Carbon Dioxide and Other Greenhouse Gases on Forest Ecosystems. CABI, Wallingford, UK


[77] Edwards N. T., Tschaplinski T. J. and Norby R. J. 2002. Stem respiration increases in CO2-enriched trees. New Phytologist 155: 239-248.

[78] Gunderson C. A., J. D. Sholtis, S. D. Wullschleger, D. T. Tissue, P. J. Hanson, and R. J. Norby. 2002. Environmental and stomatal control of photosynthetic enhancement in the canopy of a sweetgum (Liquidambar styraciflua L) plantation during three years of CO2 enrichment. Plant Cell & Environment 25: 379-393.

[79] Norby, R. J., P. J. Hanson, E. G. O'Neill, T. J. Tschaplinski, J. F. Weltzin, R. T. Hansen, W. Cheng, S. D. Wullschleger, C. A. Gunderson, N. T. Edwards, D. W. Johnson. 2002. Net primary productivity of a CO2-enriched deciduous forest and the implications for carbon storage. Ecological Applications 12:1261-1266.

[80] Tissue D. T., J. D. Lewis, S. D. Wullschleger, J. S. Amthor, K. L. Griffin, and O. R. Anderson. 2002. Leaf respiration at different canopy positions in sweetgum (Liquidambar styraciflua) grown in ambient and elevated concentrations of carbon dioxide in the field. Tree Physiology 22: 1157-1166.

[81] Wullschleger S. D, C. A. Gunderson, P. J. Hanson, K. B. Wilson, and R. J. Norby. 2002. Sensitivity of stomatal and canopy conductance to elevated CO2 concentration – interacting variables and perspectives of scale. New Phytologist 153, 485-496.

[82] Wullschleger S. D., T. J. Tschaplinski, and R. J. Norby. 2002. Plant water relations at elevated CO2 - implications for water-limited environments. Plant Cell & Environment 25: 319-331.


[83] BassiriRad H, Constable JVH, Lussenhop J, Kimball BA, Norby RJ, Oechel WC, Reich PB, Schlesinger WH, Zitzer S, Sehtiya HL, Silim S. 2003 Widespread foliage d15N depletion under elevated CO2: inferences for the nitrogen cycle. Global Change Biology 9: 1582-1590.

[84] Edwards NT, Riggs JS. 2003. Automated monitoring of soil respiration. A moving chamber design . Soil Science Society of America Journal 67:1266-1271.

[85] George K, Norby RJ, Hamilton JG, DeLucia EH. 2003. Fine-root respiration in a loblolly pine and sweetgum forest growing in elevated CO2. New Phytologist 160: 511-522.

[86] Matamala R, Gonzàlez-Meler MA, Jastrow JD, Norby RJ, Schlesinger WH. 2003. Impacts of fine root turnover on forest NPP and soil C sequestration potential. Science 302: 1385-1387.

[87] Norby RJ, Sholtis JD, Gunderson CA, Jawdy SS. 2003. Leaf dynamics of a deciduous forest canopy: no response to elevated CO2. Oecologia 136:574-584.

[88[ Norby RJ, Hartz-Rubin J, Verbrugge MJ. 2003. Pheonological responses in maple to experimental atmospheric warming and CO2 enrichment. Global Change Biology 9: 1792-1801.

[89] Reid, C.D., H. Maherali, H. B. Johnson, S. D. Smith, S. D. Wullschleger, and R. B. Johnson. On the relationship between stomatal charaters and atmospheric CO2. Geophysical Research Letters 30, NO. 19, 1983, doi:10.1029/2003GL017775.

[90] Sinsabaugh, RL, Saiya-Cork K, Long T, Osgood MP, Neher DA, Zak DR, Norby RJ. 2003. Soil microbial activity in a Liquidambar plantation unresponsive to CO2-driven increases in primary productivity. Applied Soil Ecology 24: 263-271.

[91] Williams RS, Lincoln DE, Norby RJ. 2003. Development of gypsy moth larvae feeding on red maple saplings at elevated CO22 and temperature. Oecologia 137: 114-122.

[92] Zak DR, Holmes WE, Finzi AC, Norby RJ, and Schlesinger WH. 2003. Soil nitrogen cycling under elevated CO2: A synthesis of forest FACE experiments. Ecological Applications 13: 1508-1514.


[93] Belote RT, Weltzin JF, Norby RJ. 2004. Response of an understory plant community to elevated[CO2] depends on differential responses of dominant invasive species and is mediated by soil water availability. New Phytologist 161: 827-835.

[94] Harrison KG, Norby RJ, Post WM, Chapp EL. 2004. Soil C accumulation in a white oak CO2-enrichment experiment via enhanced root production. Earth Interactions 8(14): 1-15.

[95] Johnson DW, Cheng W, Joslin JD, Norby RJ, Edwards NT, Todd DE Jr. 2004. Effects of elevated CO2 on nutrient cycling in a sweetgum plantation. Biogeochemistry 69: 379-403.

[96] King JS, Hanson PJ, Bernhardt E, DeAngelis P, Norby RJ, Pregitzer KS. 2004. A multi-year synthesis of soil respiration responses to elevated atmospheric CO2 from four forest FACE experiments. Global Change Biology 10: 1027–1042.

[97] Matamala R, Gonzàlez-Meler MA, Jastrow JD, Norby RJ, Schlesinger WH. 2004. Response to comment on "Impacts of fine root turnover on forest NPP and soil C sequestration potential". Science 304: 1745d.

[98] Norby RJ. 2004. Forest responses to a future CO2-enriched atmosphere. pp. 158-159 In: W. Steffen et al. (eds.) Global Change and the Earth System: A Planet Under Pressure. Springer, Berlin.

[99] Norby RJ, Luo Y. 2004. Evaluating ecosystem responses to rising atmospheric CO2 and global warming in a multi-factor world. New Phytologist 162: 281-294.

[100] Norby RJ, Ledford J, Reilly CD, Miller NE, O'Neill EG. 2004. Fine-root production dominates response of a deciduous forest to atmospheric CO2 enrichment. Proceedings of the National Academy of Sciences 101: 9689-9693.

[101] Pendall E, Bridgham S, Hanson PJ, Hungate B, Kicklighter DW, Johnson DW, Law BE, Luo Y, Megonigal JP, Olsrud M, Ryan MG, Wan S. 2004. Below-ground process responses to elevated CO2 and temperature a discussion of observations, measurement methods, and models. New Phytologist 162 311-322.

[102] Sholtis JD, Gunderson CA, Norby RJ, Tissue DT. 2004. Persistent stimulation of photosynthesis by elevated CO2 in a sweetgum (Liquidambar styraciflua L.) forest stand. New Phytologist 162: 343-354.

[103] Wan S, Norby RJ, Pregitzer KS, Ledford J, O'Neill EG. 2004. CO2 Enrichment and warming of the atmosphere enhance both productivity and mortality of maple tree fine roots. New Phytologist 162: 437-446.


[104] DeLucia EH, Moore DJ, Norby RJ. 2005. Contrasting responses of forest ecosystems to rising atmospheric CO2: implications for the global C cycle. Global Biogeochemical Cycles 19: GB3006.

[105] DeLucia EH, Moore DJ, Hamilton JG, Thomas RB, Springer CJ, Norby RJ. 2005. The changing role of forests in the global carbon cycle: responding to elevated carbon dioxide in the atmosphere. pp. 179-214 In: Lal R, Duxbury J, Steward BA Hansen DO, eds. Climate Change and Global Food Security,CRC Press.

[106] Hanson PJ, Wullschleger SD, Norby RJ, Tschaplinski TJ, Gunderson CA. 2005. Importance of changing CO2, temperature, precipitation, and ozone on carbon and water cycles of an upland oak forest: incorporating experimental results into model simulations. Global Change Biology 11: 1402-1423.

[107] Jastrow JD, Miller RM, Matamala R, Norby RJ, Boutton TW, Rice CW, Owensby CE. 2005. Elevated atmospheric CO2 increases soil carbon. Global Change Biology 11:2057-2064.

[108] Norby RJ, Joyce LA, Wullschleger SD. 2005. Modern and future forests in a changing atmosphere. pp. 394-414 In: Ehleringer JR, Cerling TE, Dearing MD, eds, A History of Atmospheric CO2 and Its Effects on Plants, Animals, and Ecosystems. Springer, New York.

[109] Norby RJ, DeLucia EH, Gielen B, Calfapietra C, Giardina CP,King JS, Ledford J, McCarthy HR, Moore DJP, Ceulemans R, De Angelis P, Finzi AC, Karnosky DF, Kubiske ME, Lukac M, Pregitzer KS, Scarascia-Mugnozza GE, Schlesinger WH, Oren R. 2005. Forest response to elevated CO2 is conserved across a broad range of productivity. Proceedings of the National Academy of Sciences 102: 18052-18056.


[110] Norby RJ, Iversen CM. 2006. Nitrogen uptake, distribution, turnover, and efficiency of use in a CO2-enriched sweetgum forest. Ecology 87:5-14.

[111] Norby RJ, Wullschleger SD, Hanson PJ, Gunderson CA, Tschaplinski TJ, Jastrow JD. 2006. CO2 enrichment of a deciduous forest: The Oak Ridge FACE Experiment. pp. 231-251 In: Managed Ecosystems and CO2: Case Studies, Processes, and Perspectives (Nösberger J, Long SP, Norby RJ, Stitt M, Hendrey GR, Blum H, editors). Ecological Studies, Vol. 187. Springer, Berlin.

[112] Nösberger J, Long SP, Norby RJ, Stitt M, Hendrey GR, Blum H (Eds.) 2006. Managed Ecosystems and CO2: Case Studies, Processes, and Perspectives. Ecological Studies, Vol. 187. Springer, Berlin. 459 p.


[113] Finzi AC, Norby RJ, Calfapietra C, Gallet-Budynek A, Gielen B, Holmes WE, Hoosbeek MR, Iversen CM, Jackson RB, Kubiske ME, Ledford J, Liberloo M, Oren R, Polle A, Pritchard S, Zak DR, Schlesinger WH, Ceulemans R. 2007. Increases in nitrogen uptake rather than nitrogen-use efficiency support higher rates of temperate forest productivity under elevated CO2. Proceedings of the National Academy of Sciences 104: 14014-14019.

[114] Hyvönen R, Ågren GI, Linder S, Persson T, Cotrufo MF, Ekblad A, Freeman M, Grelle A, Janssens IA, Jarvis PG, Kellomäki S, Lindroth A, Loustau D, Lundmark T, Norby RJ, Oren R, Pilegaard K, Ryan MG, Sigurdsson BD, Strömgren M, van Oijen M, Wallin G. 2007. The likely impact of elevated [CO2], nitrogen deposition, increased temperature, and management on carbon sequestration in temperate and boreal forest ecosystems. A literature review. New Phytologist 163: 463-480.

[115] Körner C, Morgan J, Norby R. 2007. CO2 fertilization When, where, how much? pp. 9-21 In Canadell JG, Pataki DE, Pitelka LF (eds) 'Terrestrial Ecosystems in a Changing World', Springer, Berlin.

[116] Monson RK, Trahan N, Rosenstiel TN, Veres P, Moore D, Wilkinson M, Norby RJ, Volder A,  Tjoelker MG, Briske DD, Karnosky DF, Fall R. 2007. Isoprene emission from terrestrial ecosystems in response to global change: minding the gap between models and observations. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences  365: 1677-1695.

[117] Norby RJ, Rustad LE, Dukes JS, Ojima DS, Parton WJ, Del Grosso SJ, McMurtrie RE, Pepper DA (2007) Ecosystem Responses to Warming and Interacting Global Change Factors. pp. 23-36  In Canadell JG, Pataki DE, Pitelka LF (eds) 'Terrestrial Ecosystems in a Changing World', Springer, Berlin.

[118] Wan S, Norby RJ, Ledford J, Weltzin JF. Responses of soil respiration to elevated CO2, air warming, and changing soil water availability in an old-field grassland. Global Change Biology 13: 2411­2424.


[119] Iversen CM, Norby RJ. 2008. Nitrogen limitation in a sweetgum plantation: Implications for carbon allocation and storage. Canadian Journal of Forest Research, in press.

[120] Demoddy O, Weltzin JF, Engel EC, Allen P, Norby RJ. 2008. How do elevated [CO2], warming, and reduced precipitation interact to affect soil moisture and LAI in an old field ecosystem? Plant and Soil, DOI: 10.1007/s11104-007-9443-x.

[121] Garten CT Jr., Classen AT, Norby RJ, Brice, DJ, Weltzin JF, Souza L. 2008. Role of N2-fixation in constructed old-field communities under different regimes of [CO2], temperature, and water availability. Ecosystems, in press.

updated on: November 10, 2007