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[1] Leaf stomatal characters influence the response of
terrestrial evapotranspiration to climate change and are used
as proxies for the reconstruction of past atmospheric [CO2].
We examined the phenotypic response of stomatal index
(SI), density (SD) and aperture (AP) to rising atmospheric
CO2 in 15 species after four years exposure to a field CO2

gradient (200 to 550 mmol mol�1 atmospheric [CO2]) or at
three Free Air CO2 Enrichment (FACE) sites. Along the
CO2 gradient, SI and SD showed no evidence of a decline to
increasing [CO2], while AP decreased slightly. There was
no significant change in SI, SD or AP with CO2 across
FACE experiments. Without evolutionary changes, SI
and SD may not respond to atmospheric [CO2] in the
field and are unlikely to decrease in a future high CO2

world. INDEX TERMS: 0315 Atmospheric Composition and

Structure: Biosphere/atmosphere interactions; 1615 Global

Change: Biogeochemical processes (4805); 1851 Hydrology:

Plant ecology; 3344 Meteorology and Atmospheric Dynamics:

Paleoclimatology. Citation: Reid, C. D., H. Maherali, H. B.

Johnson, S. D. Smith, S. D. Wullschleger, and R. B. Jackson,
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CO2, Geophys. Res. Lett., 30(19), 1983, doi:10.1029/

2003GL017775, 2003.

1. Introduction

[2] Various proxies are used to infer past atmospheric
CO2 concentrations and their consequences for the earth’s
climate [Crowley and Berner, 2001]. Stomatal density (SD;
# stomata per unit area) and index (SI; # stomata divided by
the sum of stomatal and epidermal cells #) of plants are used
because paleontological data [Woodward, 1987; Retallack,
2001] and growth chamber experiments [Royer, 2001]
suggest they decline with increasing CO2 up to 600 mmol
CO2 mol�1 [Beerling and Royer, 2002]. Stomatal density
and the size of the stomatal aperture (AP; length between
the junctions of the guard cells at each end of the stoma)
partially determine leaf conductance to H2O and CO2, a key
physiological variable in coupled atmosphere-biosphere
models [Sellers et al., 1996; Kürschner et al., 1997; Collatz
et al., 2000]. Studies in natural CO2 vents, which provide a

long-term experimental system for adaptation to elevated
CO2, suggest that many species do not alter their SD or SI in
response to elevated atmospheric CO2 [Jones et al., 1995;
Bettarini et al., 1998], although some increase AP [Tognetti
et al., 2000]. However, there are few direct experimental
tests of the CO2 - SD/SI/AP relationship in the field.
Furthermore, to our knowledge, no field experiment has
tested the effect of low atmospheric CO2 concentration on
stomatal structure and function, a critical window for paleo-
reconstruction. Here, we present data for 15 annuals and
perennial herb and woody species suggesting that, in the
absence of evolutionary changes, SD and SI do not decrease
with increasing CO2 under field conditions but AP may.

2. Methods

[3] We examined the response of SD, SI, and AP to CO2

in the field using a unique four-year experiment that
maintained a continuous CO2 gradient from paleo to future
atmospheric CO2 [200 to 550 mmol mol�1; Gill et al., 2002]
and three long-term Free Air CO2 Enrichment (FACE)
experiments. We examined woody, herbaceous, and annual
species because previous analyses of paleo-correlations
between CO2 concentrations and stomatal characters have
relied primarily on woody perennial species but have also
used herbs [Wooller and Agnew, 2002]. In addition, the
annual species Arabidopsis thaliana has been instrumental
in attempts to elucidate the role of CO2 signaling on
stomatal development [Gray et al., 2001; Lake et al., 2001].
[4] The continuous CO2 gradient and other environmental

variables in the tunnel system have been described previ-
ously [Johnson et al., 2000]. Briefly, it consisted of two
parallel elongated chambers (1 m tall � 1 m wide � 60 m
long) in a Texas grassland, with atmospheric CO2 main-
tained from ambient to pre-industrial concentrations (365 to
200 mmol mol�1) along one chamber and from elevated to
ambient CO2 along the other (550 to 350 mmol mol�1). The
different CO2 concentrations along the gradient were main-
tained by varying the rate and direction of air flow through
the chamber. Chamber temperature was controlled to track
outside ambient temperatures. Although tunnel daytime
temperatures were lower than ambient and differed between
the pre-industrial and elevated chambers in the first year of
operation [Johnson et al., 2000], temperature control was
enhanced in subsequent years so that both chambers were
at ambient temperature [H. W. Polley, USDA/ARS, Tem-
ple, TX, unpublished data]. In the 4th year of CO2

exposure, fully expanded sun leaves from each species
were sampled in the Spring (Bromus japonicus, Solanum
dimidiatum, Sorghum halepense) or Fall (Convolvulus
equitans, Paspalum pubiflorum, Solidago canadensis).
The dominant Bothriochloa ischaemum was sampled dur-
ing both periods and showed similar results. Only data for
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species growing along the entire gradient from pre-indus-
trial to elevated CO2 are presented here.
[5] Free-Air CO2 Enrichment (FACE) technology is used

in a Pinus taeda plantation at the Duke Forest, Durham, NC

[DeLucia et al., 1999], a desert scrub community at the
Nevada Test Site, Las Vegas, NV [Smith et al., 2000], and
a Liquidambar styraciflua plantation at the Oak Ridge
National Environmental Research Park, Oak Ridge, TN
[Norby et al., 2001]. All three FACE systems had been
operating for at least four growing seasons when the leaves
were sampled. CO2 fumigation began in August 1996 at the
Duke Forest, in April 1997 at the Nevada Test Site, and in
April 1998 at the Oak Ridge forest. At the Duke Forest, fully
expanded leaves were sampled in October 2000 (L. styraci-
flua and Lonicera japonica) and May 2001 (Parthenocissus
quinquefolia, Polygonatum biflorum, P. taeda). P. taeda
needles were sampled from the top of the forest canopy
using mechanical lifts; the other species were sampled from
the forest understory. At the Nevada desert site, plants were
sampled in early May 2001. At Oak Ridge, upper canopy
leaves of L. styraciflua were sampled in May 2001.
[6] At each field site, casts of fully expanded mature

leaves were made by pressing leaf sections onto a microscope
slide covered with polyvinylsiloxane dental impression ma-
terial (‘Extrude’ Medium, Kerr Manufacturing Co, Orange,
CA, USA; Williams and Greene [1988]). For short leaves
(<2 cm length), the whole leaf was used. For longer leaves, a
1-cm length starting 2 cm up from the petiole or blade base
was used to minimize variability due to position [Poole et al.,
1996]. Each impression was analyzed at 100� or 400� on a
light microscope interfaced with a solid state TV camera
(Model CCD-72-SX; DAGE-MTI Inc., Michigan City, IN,
USA) using an image analysis program (NIH Image 1.58;
U.S. National Institutes of Health; http://rsb.info.nih.gov/
nih-image/). Stomatal and epidermal cell counts were done
on 3 to 6 fields-of-view per slide (depending on the variation
in the counts) and were averaged for each slide. For the Oak
Ridge site, the upper canopy leaves of 3 to 4 trees in each of
three replicate ambient and elevated CO2 rings were har-
vested. Leaves were placed into plastic envelopes and trans-
ported immediately to the laboratory, where leaf surface
impressions were taken using clear fingernail polish. The
number of stomata within each of three randomly selected
fields (0.05 mm2) per leaf was counted using a light micro-
scope, and stomatal density was averaged per ring.

3. Results and Discussion

[7] Along the CO2 gradient, SI was not correlated with
CO2 either for any single species (P > 0.18 in all species,
Figures 1a and 1b) or for the pooled data (P = 0.87,
Figure 2a). Although SI is preferred to SD, because it is

Figure 1. Stomatal characters of dominant species grown
at subambient to elevated CO2 in tunnel chambers for four
years. Abaxial stomatal index (SI, the ratio of # stomata to
the sum of stomata and epidermal cells #; (A–B), stomatal
density (SD, # stomata per unit leaf area; (C–D), and the
length of the stomatal aperture (AP, length between junction
of the guard cells; E–F) are shown for C3 grass and forbs
(A, C, E): Brja, Bromus japonicus; Coeq, Convolvulus
equitans; Soca, Solidago canadensis; Sodi, Solanum
dimidiatum; and C4 grasses (B, D, F): Bois, Bothriochloa
ischaemum; Papu, Paspalum pubiflorum; Soha, Sorghum-
halepense. Data were fitted to a power model in SAS 6.12
(SAS Inst. Cary, NC). (n = 6, mean ± standard error).

Figure 2. Relative change in stomatal characters of dominant species as a function of growth [CO2] after four years in
tunnel chambers. For all species pooled, each SI, SD, or AP at growth CO2 is expressed as a proportion of SI, SD or AP at
ambient CO2. (n = 6 for mean ± standard error; dashed line = 1).
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unaffected by changes in epidermal cell expansion with
CO2 or other environmental factors [Retallack, 2001; Royer,
2001], SD is easier to measure and is often used when
epidermal cells cannot be counted accurately. SD showed
little evidence of the predicted decline with CO2. Analyzed
for species individually, SD increased significantly with
CO2 (Figure 1c) for Br. japonicus (r2 = 0.243, P < 0.005)
and S. dimidiatum (r2 = 0.252, P < 0.005), opposite the
direction predicted, and decreased only for one species,
S. canadensis (r2 = 0.180, P < 0.05). With all species
pooled, SD showed a weak positive correlation with CO2

(P = 0.02, Figure 2B), again opposite the direction predicted.
AP showed a weak negative correlation with CO2 (P < 0.05,
Figure 2c) suggesting some compensation between stomatal
number and size. However, individually, only S. canadensis
and S. dimidiatum showed significant decreases in AP with
increasing CO2 (r

2 = 0.216, P < 0.004; and r2 = 0.542, P <
0.0001, respectively, Figure 1e), while AP for Br. japonicus
increased significantly (r2 = 0.149, P < 0.01, Figure 1e).
[8] Results from the FACE experiments provide no evi-

dence for a decline in SI or AP generally (P = 0.62 and P =
0.33, respectively) or for any species individually (Table 1).
Similarly, the pooled SD data provided no evidence for a
decline in SD at high CO2 (P = 0.83, Table 1), also in
contrast to current predictions. In fact, in seven of eight
species, mean SD tended to be higher at elevated CO2

(though not significantly), and only L. styraciflua when
grown in the understory showed decreased SD (Table 1).
These data suggest no significant morphological stomatal
adjustments from current ambient to elevated CO2. They
also suggest that evolutionary timescales may be required
for such responses to projected future CO2 concentrations,
as occurred for a few species in CO2 vent studies [Jones et
al., 1995; Tognetti et al., 2000]. Many trees will experience
almost a doubling of atmospheric CO2 in their current
lifetime without the opportunity for such evolutionary
changes.
[9] Our long-term experiments suggest that no general

association between SD, SI or AP and future atmospheric

CO2 is evident in the field. Available data on SD and SI from
short-term CO2 enrichment studies in open-top field cham-
bers [Royer, 2001] and long-term records from near CO2

springs [Bettarini et al., 1998] are consistent with this
conclusion. Individually, species responded from pre-indus-
trial to future CO2 concentrations by a combination of
change in stomatal size and number rather than solely by
SD, and many species in all four experiments decrease their
stomatal conductance in response to increased CO2 despite
the lack of decrease in SD or SI [e.g., Maherali et al., 2002;
Nowak et al., 2001].
[10] Although our experiments do not incorporate long-

term evolutionary effects, they reinforce some caveats about
using stomatal characters in paleo-reconstruction of atmo-
spheric CO2, especially when historical factors such as
precipitation, temperature, canopy position and leaf age
are poorly characterized. Numerous studies have reported
the effects of environmental variables other than CO2 on
stomatal development and morphology. For example, light
availability and quality [e.g., Tichá, 1982; Schoch et al.,
1984; Liu-Gitz et al., 2000] affect stomatal development
and, hence, a plant can have leaves with different SD
depending on leaf position in the canopy [Ceulemans et
al., 1995]. Furthermore, signaling of light and CO2 for
stomatal development has been explored and appears sim-
ilar [Lake et al., 2001]. Likewise, exposure to drought
during leaf development reduces SD [Ciha and Brun,
1975; Awada et al., 2002], and, in altitudinal gradients
where atmospheric CO2 decreases, SD is determined by
precipitation rather than CO2 concentration [Körner et al.,
1986]. Therefore, environmental factors other than CO2

concentration may be stronger determinants of stomatal
characters in natural settings.
[11] Predictions of reduced SD, SI, or AP with rising

atmospheric CO2 are implicit in coupled biosphere-atmo-
sphere models as a mechanism for declining stomatal
conductance [Sellers et al., 1996; Kürschner et al., 1997;
Aasamaa et al., 2001]. These relationships are also being
incorporated into projected forest responses to pollutants

Table 1. Abaxial Stomatal Index (SI), Density (SD) and Length of the Stomatal Aperture (AP) of Woody and Herbaceous Species Grown

at Current and Elevated Atmospheric CO2 (FACE) for at Least Four Years

Species

SI SDa AP

Location

Ambient
Avg.
(#/#)

%
Change

Ambient
Avg. (#mm�2) % Change Ambient Avg. (mm) % Change

Eriogonum trichopes (forb)b 14.7 (0.3) �0.4 312 (31) +2.8 18.2 (1.5) �1.1 Nevada Test Site, NVd

Larrea tridentata (shrub)b N/A N/A 121 (10) +6.4 19.6 (0.4) +11.2* Nevada Test Site, NV
Lepidium lasiocarpum (forb)b 13.5 (0.6) +4.6 246 (16) +15.6 14.8 (0.5) �1.3 Nevada Test Site, NV
Liquidambar styraciflua (tree) N/A N/A 461 (22)c �3.0 N/A N/A Overstory, Oak Ridge TNe

Liquidambar styraciflua (tree) 11.4 (0.4) �8.1 264 (16) �24.5** 16.1 (0.4) +3.0 Understory, Durham NCf

Lonicera japonica (vine) 11.9 (0.3) �0.6 237 (10) +6.8 17.5 (0.3) +1.5 Understory, Durham NC
Parthenocissus quinquefolia (vine) 8.7 (0.2) �0.15 121 (5) +16.6 21.0 (0.5) +2.2 Understory, Durham NC
Pinus taeda (tree) N/A N/A 112 (5) +1.1 33.4 (1.2) �1.8 Overstory, Durham NC
Polygonatum biflorum (forb) 16.4 (1.2) +10.8 49 (8) +1.5 27.5 (1.3) +5.2 Understory, Durham NC

The % Change from ambient CO2 (ca. 360 mmol mol�1) in SI, SD or AP is shown for plants grown at elevated CO2 (ca. 550–560 mmol mol�1). In each
FACE site, leaves of six individuals per species were used for each replicate ambient or elevated CO2 ring (n = 18, mean ± standard error). CO2 effect is
significant at P < 0.05* and at P < 0.005** using ANOVA.

aRatio of abaxial to adaxial SD was near 1 for amphistomatous species and was not affected by CO2.
bAmphistomatous leaf.
cn = 4.
dSmith et al. [2000].
eNorby et al. [2001].
fDeLucia et al. [1999].
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such as ozone [Evans et al., 1996]. Our results indicate that
SI, SD, and AP are unlikely to decline in response to future
high CO2, and may not have responded significantly to low
CO2 in the past. Stronger field-based evidence supporting
the relationships should emerge before stomatal characters
are incorporated into biosphere-atmosphere models.
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