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ABSTRACT

Plants influence ecosystem water balance through their physiological, phenological, and biophysical responses to environmental
conditions, and their sensitivity to climate change could alter the ecohydrology of future forests. Here we use a combination of
measurements, synthesis of existing literature, and modelling to address the consequences of climate change on ecohydrologic
processes in forests, especially response to elevated CO2 (eCO2). Data assessed from five free-air CO2 enrichment (FACE)
sites reveal that eCO2-reduced stomatal conductance led to declines in canopy transpiration and stand water use in three
closed-canopy forest sites. The other two sites were in the early stages of stand development, where a strong eCO2-stimulation
of canopy leaf area led to enhanced stand water use. In the sweetgum FACE experiment in Oak Ridge, Tennessee (USA),
eCO2 reduced seasonal transpiration by 10–16%. Intra-annual peak measured fluxes in transpiration ranged from 4Ð0–5Ð5 mm
day�1, depending on year. The Biome-BGC model simulated similar rates of transpiration at this site, including the relative
reductions in response to eCO2. As a result, simulations predict ¾75 mm average annual increase in potential water yield in
response to eCO2. The direct effect of eCO2 on forest water balance through reductions in transpiration could be considerable,
especially following canopy closure and development of maximal leaf area index. Complementary, indirect effects of eCO2

include potential increases in root or leaf litter and soil organic matter, shifts in root distribution, and altered patterns of water
extraction. Copyright  2010 John Wiley & Sons, Ltd.
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INTRODUCTION

The terrestrial water cycle functions across multiple
spatial and temporal scales, simultaneously driven by
dynamics of water transport vertically through the
soil–plant–atmosphere continuum and horizontally
across the landscape (Chahine, 1992; Loaiciga et al.,
1996; Rodriguez-Iturbe, 2000). Ecosystems, in turn,
respond to the resulting soil and topographic conditions
created by the vertical and horizontal flux of water and
exert an influence on the hydrologic cycle through feed-
backs that are driven by the distribution, structure, func-
tion, and dynamics of plant communities (Newman et al.,
2006). In addition, water use within and movement from
ecosystems is strongly regulated by component interac-
tions between soils and plants in response to climatic
and edaphic factors (Jackson et al., 2001; Newman et al.,
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2006). Local, regional, and global water cycles are there-
fore likely to be sensitive to current and projected changes
in climate including warmer temperatures, altered pre-
cipitation patterns, and rising CO2 concentrations in the
atmosphere (Cramer et al., 2001; Thornton et al., 2002;
Gerten et al., 2004; Meehl et al., 2007).

Research conducted on the response of woody vegeta-
tion to climate change, in particular, to atmospheric CO2

enrichment, has revealed the sensitivity of several key
plant processes to elevated CO2 (eCO2). The most promi-
nent of these has been that the eCO2 can lead to higher
leaf photosynthesis, a general stimulation of net canopy
carbon uptake, and enhanced rates of net primary produc-
tion (NPP)—with the potential for increased carbon stor-
age in terrestrial ecosystems (Norby et al., 2005; Leakey
et al., 2009). There is an equally strong expectation that
the CO2-induced reductions in stomatal conductance and
leaf-level transpiration may have important consequences
for forest water dynamics (Betts et al., 2007; Leuzinger
and Körner, 2010) and, in turn, for ecosystem-scale pro-
cesses that depend on soil water availability.

Although the leaf-level responses of stomatal conduc-
tance to eCO2 are important, they are by themselves
insufficient to draw conclusions about ecohydrological
processes that operate at longer and larger temporal and
spatial scales (Wullschleger et al., 2002b). eCO2 can
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increase carbon allocation below ground, thereby increas-
ing root biomass, shifting root distribution within the
soil profile, and potentially increasing build-up of soil
organic matter (SOM) through root turnover and exu-
dation (Jastrow et al., 2005; Iversen et al., 2008). Root
distribution, production, and turnover can affect water
infiltration dynamics because of the influence of root
channels and preferential pathways of water transport
within the profile. Additional organic matter inputs to
the soil can increase the soil water–holding capacity and
buffer water release and flows within the vadose zone.
Interactions among root distribution, SOM, and soil water
content will impact seasonal timing and depth of water
extraction, and thereby apparent water stress (and carbon
uptake) during the growing season. Integrated consid-
eration of soil–root and leaf–atmosphere responses to
changes in CO2 availability (Wullschleger et al., 2002a)
must be scaled to impacts realized at canopy and land-
scape levels to ultimately address higher-order questions
about forest water use and potential water conservation
on ecosystem-scale processes.

A larger-scale, longer-term consideration of shifts in
vegetation structure may then be linked to species-
specific competitive interactions within ecosystems in
response to the changing environment, such as woody
plant expansion or contraction from specific landscapes.

Achieving an integrated understanding of how climate
change will impact hydrologic cycles in forests will
require a concerted effort. It is, however, an important
goal and one that can best be addressed through an
approach that engages experimentalist and modeller.
There have been a variety of modelling efforts to
assess the impacts of changing environmental conditions
on ecosystem water use (Law et al., 2000; Hanson
et al., 2005; Siqueira et al., 2006; Luo et al., 2008) that
vary widely in their spatial scale and temporal time
step. Ecosystem water flux is often linked to individual
environmental constraints to stomatal conductance (e.g.
radiation and vapour pressure deficit (VPD); Ewers et al.,
2005), maintenance of hydraulic conductance through the
soil–plant–atmosphere continuum (Sperry et al., 1998),
and various measures and estimates of site water balance
(Wilson et al., 2001; Schäfer et al., 2002; Warren et al.,
2005; Granier et al., 2007; Leuzinger and Körner, 2010).
As issues that surround the response of forests to climate
change become more complex, additional studies that
integrate across temporal and spatial scales will be
required.

In this study, we use a combination of analysis of
experimental data, synthesis of existing literature, and
modelling to address the mechanisms and implications
of climate change on ecohydrologic processes in forests.
Research conducted over the last 12 years at the Oak
Ridge National Laboratory (ORNL) free-air CO2 enrich-
ment (FACE) facility highlights the role of leaf- and
canopy-scale processes in determining the hydrologic
response of forests to climate change. Information from
these investigations coupled with published results from

other forest FACE experiments are used to parameter-
ize the Biome-BGC model (Thornton et al., 2002), an
ecosystem process model that simulates water, energy,
and biogeochemical fluxes on a daily time step. Model
mechanisms controlling site water balance are evaluated
against long-term measurements, and predictive ecohy-
drological responses to atmospheric CO2 enrichment are
explored at the landscape scale.

MATERIALS AND METHODS

Comparative CO2 enrichment studies

Ecohydrological impacts of woody plant response to
eCO2 have long been inferred from measurements con-
ducted on single leaves, seedlings, or individual saplings
grown in growth chambers, greenhouses, or open-top out-
door chambers (Norby et al., 1999). While they are useful
for the recognition of potential physiological responses
to eCO2 like photosynthesis (Wullschleger et al., 1992),
the size and longevity of forests generally precluded
investigations of stand-level responses. In addition, the
artificial nature of these enclosed systems can easily
confound results of CO2 treatments, driven by concur-
rent alterations in the localized plant environment and
interactive feedbacks; e.g. spectral quality, thermal gra-
dients, wind, moisture availability, soil characteristics,
or rooting depth. Accurate measurement and modelling
of eCO2-dependent water flux dynamics under natural
conditions and at larger spatial and temporal scales has
thus required a substantial shift in the experimental sys-
tems (Norby et al., 2001). As such, FACE technology
has been employed, void of chamber walls and permit-
ting plots that were large enough such that the exper-
iments were not limited to seedlings, single trees, or
clusters of small-stature individuals. FACE studies in
woody ecosystems began in earnest in the 1990s, with
some studies continued for a decade or longer, expos-
ing maturing stands to inter-annual climate variations in
conjunction with regulated CO2 concentrations. Here, we
consider five long-term FACE studies that have been con-
ducted in temperate forest ecosystems, with plantations of
young poplar (treatments applied as trees aged 0–6 years,
coppiced at year 3; POP/EuroFACE), aspen/birch/maple
(0–12 years; Aspen-FACE), pine (14–27 years; Duke),
sweetgum (12–21 years; ORNL), and mature mixed
hardwood (¾100 years; Web-FACE). Ecohydrological
data from these five sites comprised the comparative liter-
ature review (Table I), with measurement and modelling
of the sweetgum plantation at ORNL used as a case study
(described below).

ORNL site description and experimental facilities

The research reported here, much of which spans
the period 1998–2008, took place in a 12- to 21-
year-old sweetgum (Liquidambar styraciflua L.) tree
plantation established in Oak Ridge National Environ-
mental Research Park in eastern Tennessee (35°540N;
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Table I. Physiological and hydrological responses of trees and forests to atmospheric CO2 enrichment.

Parameter Web-FACE Duke ORNL Aspen-FACE POP/EuroFACE

Stomatal conductance �4 to �21 �5 �14 to �44 0 to �44/C19 �16 to �39
Stand water use �14 �7 �13 C25 C12 to C23
Evapotranspiration �10 na �7 na na
Runoff na C na na na
Drainage na C na na na
Upper soil moisture 0/C C 0/C C na
Root production na C C 0/C C
Root standing crop 0/� C C C C
LAI 0 0/C 0/C C C
Species Carpinus betulus Pinus taeda Liquidambar

styraciflua
Populus

tremuloides
Populus x

euramericana
Fagus sylvatica — — Betula papyrifera —
Quercus petraea — — Acer saccharum —

References Cech et al. (2003) Ellsworth et al.
(1995)

Gunderson et al.
(2002)

Noormets et al.
(2001)

Liberloo et al.
(2005)

Keel et al. (2007) Ellsworth (1999) Norby et al. (2003) Uddling et al.
(2008, 2009)

Lukac et al. (2003)

Leuzinger et al.
(2005)

McCarthy et al.
(2007)

Wullschleger and
Norby (2001)

Tricker et al.
(2005)

Leuzinger and
Körner (2007)

Pritchard et al.
(2008)

Wullschleger et al.
(2002b)

King et al. (2005) Tricker et al.
(2009)

Bader et al. (2009) Schäfer et al.
(2002)

Iversen et al.
(2008)

Pregitzer et al.
(2008)

—

Quantitative and qualitative estimates were derived from the published literature for long-term studies where trees were exposed to ambient and ca
550 ppm CO2 concentrations. Values represent the percentage change in a variable in response to eCO2. Non-measured values are represented by
‘na’.

84°200W), at an elevation of 227 m. One-year-old sweet-
gum seedlings were planted in 1988 at 2Ð3 ð 1Ð2 m
spacing on previously cultivated alluvial land along the
Clinch River. The soil is an Aquic Hapludult with
a silty–clay–loam texture (21 : 55 : 24; sand : silt : clay).
Rooting depth was ¾1Ð2–2Ð2 m for individual sweetgum
trees destructively extracted from the site after conclu-
sion of the study (Warren et al., unpublished). A survey
of the site in 1998 indicated that the 10-year-old planta-
tion had a basal area of about 29 m2 ha�1 with an average
height of 12 m and an average leaf area index (LAI) of
5Ð5 m2 m�2.

A FACE system was installed in four of the five 25-
m diameter plots in 1997. The FACE system regulates
the release of CO2 from the vertical PVC vent pipes
located around each plot on the basis of wind speed,
wind direction, and in situ measurements of current
CO2 concentration within the canopy (Hendrey et al.,
1999). Since 1998, eCO2 has been released into the
two treatment plots during each growing season, while
the tree stands in the other three plots were in air
with the current ambient CO2 (aCO2) concentration.
Atmospheric CO2 in the elevated plots was maintained
at a target daytime concentration of 525–555 ppm during
the growing season, ca 40% higher than CO2 levels in
the ambient plots (380–400 ppm).

Mean annual temperature (1962–1993) at the study
site is 13Ð9 °C and the annual precipitation averages
1371 mm. Precipitation is generally distributed through-
out the year at the site; however, there are often 3-
to 5-week periods of significant water deficit during
late summer. Volumetric soil water content in the upper

soil (0–20 cm) was measured at six locations per plot
throughout the growing season using time-domain reflec-
tometry (Soil Moisture Equipment Corporation, Santa
Barbara, CA, USA). Climate data were collected in
all years with micrometeorological equipment including
measurement of precipitation, wind, photosynthetically
active radiation (PAR), and air temperature and relative
humidity above and beneath the canopy. All micromete-
orological data are documented and archived for public
use at http://public.ornl.gov/face/ORNL/ornl data.shtml.

Measured sap flow and canopy transpiration

The compensated heat-pulse technique (Greenspan Tech-
nology Pty. Ltd, Warwick, Queensland, Australia) was
used in 1999 and 2004 to measure the sap flow for four
trees in each of two aCO2 and eCO2 plots (16 trees in
total). These trees were located near the centre of each
plot and ranged in diameter from 12Ð4 to 14Ð7 cm in
1999 and 11Ð4 to 19Ð8 cm in 2004. A single heat-pulse
probe was positioned in each tree so that the sensing
thermistor was located at a sapwood depth of 19 mm.
The control module and data logger were programmed
to provide a heat pulse for 1Ð8 s and measurements were
recorded every 60 min. Sap velocity was calculated from
the corrected heat-pulse velocity based on Equation 3 of
Barrett et al. (1995). All other aspects of data analysis
are described in Wullschleger and Norby (2001).

Sap flow in 2008 was quantified using thermal dissipa-
tion probes (Dynamax Inc., Houston, TX, USA) installed
at multiple depths in five trees in each of the two aCO2

and two eCO2 treatment plots. These trees were located
across each plot and ranged in diameter (DBH) from 13Ð2
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to 22Ð4 cm. As described by Granier (1987), the tempera-
ture difference between the heated and unheated probe is
proportional to the voltage differential between the probes
and can be related to sap velocity based on the empiri-
cal relationship between the voltage differential and the
heat dissipation attributable to sap flow near the heated
probe. Probes were insulated with polystyrene foam and
reflective bubble insulation to minimize errors due to
natural thermal gradients. Voltage differences between
probes were sampled every 15 min during the grow-
ing season and stored on a data logger (model CR10X,
Campbell Scientific). Radial patterns of sap flow were
established using measurements of sap velocity at 1Ð5,
2Ð5, and 7Ð0 cm within dominant trees. Tree sap flow was
calculated by linear interpolation of radial patterns of sap
velocity through each consecutive annulus of sapwood
area bound by sensors installed at different depths.

Hourly rates of stand transpiration (mm h�1) for each
of the two aCO2 and two eCO2 plots were estimated as
a function of measured sap velocity, total stand sapwood
area, and the fraction of sapwood functional in water
transport. Sapwood area averaged across all plots was
23Ð7 m2 ha�1 in 1999 (Wullschleger and Norby, 2001),
30Ð5 m2 ha�1 in 2004, and 36Ð3 m2 ha�1 in 2008. Treat-
ment differences in sapwood area were not observed over
the course of the experiment. Daily rates of stand tran-
spiration (mm day�1) in both the years were calculated
via a simple summation of hourly rates.

Model description

We used the terrestrial ecosystem process model Biome-
BGC, version 4.1.1 (Thornton et al., 2002), incorporating
an extension on the model self-initialization that uses
a dynamic mortality routine (Pietsch and Hasenauer,
2006). The Biome-BGC model simulates states and fluxes
of water, carbon, and nitrogen in a forest ecosystem,
using a daily time step. The model is forced by daily
weather data: minimum and maximum near-surface air
temperature, incident shortwave radiation, atmospheric
VPD, and precipitation. These were calculated from
hourly observations made at the site from 1998 to 2008
(Riggs et al., 2009). Other required model inputs include
ecophysiological parameters, disturbance history, soil
physical properties, atmospheric CO2, and atmospheric
nitrogen deposition.

The plant canopy LAI controls canopy radiation
absorption and light transmission to the ground, water
interception in the canopy, photosynthesis, and litter
inputs to the detrital pools. Timing of the canopy develop-
ment and senescence is dependent on temperature and day
length following the approach of White et al. (1999), and
ultimately constrains seasonal patterns of photosynthesis
and transpiration. Photosynthesis is calculated with the
Farquhar photosynthesis routine using kinetic constants
as per Woodrow and Berry (1988); and de Pury and Far-
quhar (1997), as well as parameters defined by Kuehn
and McFadden (1969); and Wullschleger (1993), and a
Vmax –Jmax relationship specifically described for ORNL

FACE (Sholtis et al., 2004). The model is sensitive to
feedbacks from mineralization processes and thus site
nutrient availability. The model also depends heavily on
water inputs and cycling through the ecosystem. Precipi-
tation is partially intercepted by the canopy, depending on
the LAI, an interception coefficient, and the precipitation
intensity; and the residual is input directly to the soil
water pool. The canopy water either evaporates on the
same day or, if not all the intercepted water can be evapo-
rated, is added to the soil water pool, to represent canopy
dripping. Evaporation is calculated independently from
the leaf and the soil surfaces with the Penman–Monteith
equation as a function of air temperature, air pressure,
VPD, incident solar radiation, and the transport resistance
of water vapour and sensible heat. The model assumes
a single canopy layer, and does not assess the poten-
tial contribution from the relatively sparse understorey.
Precipitation inputs to the soil water pool can drain as
outflow (water yield) or be stored and available for evap-
orative or transpirational loss from the system. The total
soil water–holding capacity at saturation is determined
from the total ‘effective soil depth’ and texture based
on empirical pedotransfer functions (Clapp and Horn-
berger, 1978; Cosby et al., 1984; Saxton et al., 1986).
Effective soil depth for both treatments was defined as
2 m, derived from the maximum observed rooting depth
and reduced by the estimated stone fraction >2 mm.
Subsequent model estimation of soil water potential was
modified to fit the soil water retention curve previously
developed for the Oak Ridge FACE site (Warren et al.,
unpublished).

Potential water yield from the system requires knowl-
edge of volumetric water content at field capacity, defined
here as �0Ð033 MPa on the basis of field data collected at
the Oak Ridge FACE site. The model assumes that water
above saturation is lost immediately as outflow and that
water between saturation and field capacity is lost at a rate
of 50% per day. Remaining soil water is then available
for evapotranspiration. Plant water uptake is driven by the
demand of water for transpiration, where transpiration is
regulated by stomatal conductance and, as evaporation,
calculated with the Penman–Monteith equation. Maxi-
mum stomatal conductance is limited by reduction fac-
tors, dependent on solar radiation, VPD, water potential
gradients, and temperature. The stomata response to solar
radiation is described as a hyperbolic function, with the
half saturation value generally set to 75 µmol m�2 s�1

after Körner (1995) who gives a range of values between
50 and 100 µmol m�2 s�1. The other reduction factors
are linear functions of the VPD, the soil water potential
(a surrogate for the predawn leaf water potential), and
the daily minimum temperature. Beyond certain thresh-
old values, stomatal conductance is at its maximum or
is zero (Table II). Total canopy conductance follows the
electrical circuit analogy, with stomatal and cuticular con-
ductance in parallel and leaf boundary layer conductance
in series.

The model theory and its assumptions and methods
of parameterization have been fully described elsewhere
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Table II. Ecophysiological constants used in the Biome-BGC model of Liquidambar styraciflua as simulated under ambient (a) or
elevated (e) atmospheric CO2 as parameterized for the ORNL FACE research facility.

Parameter estimate Unit Parameter description

eCO2 aCO2

1 1 flag 1 D woody 0 D non-woody
0 0 flag 1 D evergreen 0 D deciduous
1 1 flag 1 D C3 photosynthesis 0 D C4 photosynthesis
1 1 flag 1 D model the phenology 0 D user-specified phenology
0 0 yday Yearday to start new growth (when phenology flag D 0)
0 0 yday Yearday to end litter fall (when phenology flag D 0)
0Ð2 0Ð2 — Transfer growth period as fraction of growing seasona

0Ð3 0Ð3 — Litter fall as fraction of growing seasona

1 1 yr�1 Annual leaf and fine-root turnover fractionb

0Ð7 0Ð7 yr�1 Annual live wood turnover fractionb

0Ð005 0Ð005 yr�1 Annual whole-plant minimum mortality fractiona

0Ð02 0Ð02 yr�1 Annual whole-plant maximum mortality fractiona

225 225 yr Length for (low) elliptic mortalitya

75 75 yr Length for (high) elliptic mortalitya

0 0 yr�1 Annual fire mortality fractionc

0·72 0Ð38 — (allocation) new fine root C : new leaf Cc

2·49 2Ð44 — (allocation) new stem C : new leaf Cc

0Ð16 0Ð16 — (allocation) new live wood C : new total wood Cb

0·07 0Ð08 — (allocation) new coarse root C : new stem Cc

0Ð1 0Ð1 — (allocation) current growth : storage growthc

33 30 kg C kg�1 N C : N of leavesc

67 58 kg C kg�1 N C : N of leaf litterc

44 44 kg C kg�1 N C : N of fine rootsc

50 50 kg C kg�1 N C : N of live woodb

434 430 kg C kg�1 N C : N of dead woodc

0Ð38 0Ð38 — Leaf litter labile proportionb

0Ð44 0Ð44 — Leaf litter cellulose proportionb

0Ð18 0Ð18 — Leaf litter lignin proportionb

0Ð34 0Ð34 — Fine-root labile proportionb

0Ð44 0Ð44 — Fine-root cellulose proportionb

0Ð22 0Ð22 — Fine-root lignin proportionb

0Ð77 0Ð77 — Dead wood cellulose proportionb

0Ð23 0Ð23 — Dead wood lignin proportionb

0Ð005 0Ð005 LAI�1 d�1 Canopy water interception coefficienta

0Ð54 0Ð54 — Canopy light extinction coefficientb

2 2 — All sided: projected leaf areab

23·6 25 m2 kg�1 C Canopy average specific leaf area (projected area basis)c

1Ð26 1Ð26 — Shaded: sunlit specific leaf areac

0Ð12 0Ð12 — Fraction of leaf N in Rubiscoa

0·0045 0Ð005 m s�1 Maximum stomatal conductance (projected area basis)d

0Ð00006 0Ð00006 m s�1 Cuticular conductance (projected area basis)b

0Ð01 0Ð01 m s�1 Boundary layer conductance (projected area basis)b

�0Ð334 �0Ð334 MPa Leaf water potential: start of conductance reductionb

�2Ð2 �2Ð2 MPa Leaf water potential: complete conductance reductionb

500 500 Pa VPD: start of conductance reductiond

3600 3600 Pa VPD: complete conductance reductionb

0 0 °C Night temperature: start of conductance reductionb

�8 �8 °C Night temperature: complete of conductance reductionb

Parameter differences between CO2 treatments are in bold.
a E. Pötzelsberger, personal assessment.
b White et al. (2000).
c Published data from the ORNL FACE site: http://public.ornl.gov/face/ORNL/ornl data.shtml.
d Wullschleger et al. (2002b).

(White et al., 2000; Thornton et al., 2002; Thornton and
Rosenbloom, 2005; Pietsch and Hasenauer, 2006).

Application of Biome-BGC to the ORNL FACE site

In this study, our aim was to (1) represent observed
growth and water use of the ORNL FACE plots from

1998 to 2008 using the mechanistic ecosystem model
Biome-BGC, (2) quantify non-measured ecosystem water
fluxes, and (3) determine treatment-specific ecosystem
water budgets. The model was informed by measure-
ments within two eCO2 plots or three aCO2 plots, scaled
to one simulation per treatment. Parameters were based
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on site measurements, previous values used at similar
sites, or informed estimates (Table II). Daily weather
data were assumed to be constant across treatments, and
included daily minimum and maximum temperatures,
precipitation, relative humidity and total incident radi-
ation, and albedo (assumed at 0Ð2). Differences between
the two simulated ecosystems lay in some of the ecophys-
iological constants derived from measurements at the site,
and, of course, the atmospheric CO2 content.

A total of 42 ecophysiological parameters were
required for the vegetation-specific parameterization
(Table II), many of which were available from previ-
ous measurements at the ORNL FACE site. Parameters
associated with carbon (C) and nitrogen (N) allocation
within the various plant compartments were based on
allometric relationships (Norby et al., 2002). C alloca-
tion has shifted through time at the site, such that fine
root : leaf, coarse root : stem, and stem: leaf allocation
ratios declined over the years of the experiment; however,
the model does not allow dynamic allocation parameters.
Similarly, plant tissue C : N ratios that regulate respira-
tion, and determine, for leaves, the maximum rate of
carboxylation (Vcmax), show a positive trend over the
years. In addition, the canopy-averaged specific leaf area
declined through time. While there were multiple pro-
cesses and components of the system that were dynamic,
the limitations in this version of the model required some
parameters to be based on mean values over the entire
observation period.

Maximum stomatal conductance is a particularly
important ecophysiological parameter for the water bud-
get, and is greatly reduced by eCO2 treatments. As
described earlier, the model can reduce stomatal conduc-
tance based on the reduction factors associated with sev-
eral environmental variables. The model assumes a linear
relationship between stomatal conductance (gs) and VPD
between a lower (where gs reduction begins) and an upper
boundary (where stomata closure is complete). The lower
boundary (0Ð5 kPa) could be estimated from canopy
conductance—VPD data obtained in 1999 (Wullschleger
et al., 2002b). Stomatal response to atmospheric CO2

concentration, however, has not yet been explicitly
addressed in the model. In order to account for reduced
stomata aperture under eCO2, a lower maximum value for
stomatal conductance was set—equal to 0Ð0045 m s�1

(eCO2) as compared to 0Ð005 m s�1 (aCO2)—based
on canopy conductance estimates derived from sap
flow measurements using an inverted Penman–Monteith
equation (Wullschleger et al., 2002b).

The Biome-BGC model was first parameterized to fit
the average stand situation between 1999 and 2008, and
then run for the whole time period to assess its appli-
cability for prediction of canopy transpiration and site
water fluxes until 2008. Several problems arose with the
parameterization. First, simulated spring initiation of the
canopy occurred several weeks earlier than observed leaf
out. The sweetgum trees were established from a more
northerly seed source (Missouri) and have always dis-
played bud-burst later than native vegetation. Thus, the

seasonal development of simulated LAI for the model
had to be adjusted by altering the empirical formula-
tion of White et al. (1999) and hence shifting the day
of leaf flushing by more than two weeks. Second, the
soil water retention properties modelled using the empir-
ical pedotransfer formulations of Clapp and Hornberger
(1978); Saxton et al. (1986), and Cosby et al. (1984)
did not match field observations. At a given volumetric
water content, the soil water potential was underestimated
(more negative) and thus drought stress and accordant
reductions in stomatal conductance appeared too early in
the simulations. Slight modifications of the original for-
mulations significantly improved the model performance
with regard to the transpiration predictions, especially
during periods of limited water supply. Thus, premature
complete stomatal closure (which was not observed) due
to low soil water potential could be avoided in the model.
Modifications included adjustment of the modelled water
retention curve to better reflect field measurements and
adjustment of relative maximum stomatal conductance
between treatments—differences in field measurements
(Wullschleger et al., 2002b) varied from 0–20C%, a
value of 10% was settled on for the simulations which
provided the best fit to the data. Variability in the tree size
and structure can also affect the ability of the model to
derive outflow from tree-level transpiration scaled to the
stand. These include specifically variation in tree size,
canopy position, stand-level, and microsite topography
(including subsurface clay ‘lenses’), and seasonal dynam-
ics of the coarse and fine litter layers. Each of these
components is not directly included in the model, but may
impact interception, evaporation, infiltration, and surface
or subsurface flow dynamics.

RESULTS

Overview of FACE studies

eCO2 consistently reduced the stomatal conductance by
up to 44% across the five FACE studies (Table I),
although in later years at Aspen-FACE eCO2 had little
effect or stimulated stomatal conductance (Uddling et al.
2009). Reduced stomatal conductance led to a decline in
stand water use for sites that did not have a strong stim-
ulation of LAI. Response of LAI within the pine FACE
site was linked to soil nutrient availability, although inter-
annual environmental conditions, especially drought, lim-
ited this response (McCarthy et al., 2007). Similarly at
ORNL, eCO2 tended to transiently increase sweetgum
LAI during non-drought years, but not during drought
and post-drought years (Norby et al., 2003; Warren et al.,
in review). In contrast, LAI and aboveground production
were greatly enhanced by eCO2 for Populus sp. in the
Aspen-FACE and POP/EuroFACE studies, which resulted
in substantial increases in stand water use. Despite some
differences in LAI and stand water use among the FACE
studies, eCO2 increased water content in the upper 20 cm
of the soil profile within the four non-irrigated FACE
studies (Table I).
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Figure 1. Daily canopy transpiration as scaled tree sap flow in a sweetgum forest plantation exposed to ambient or elevated atmospheric CO2 across
multiple years. Seasonal patterns of leaf area index (LAI) were based on three aCO2 plots or two eCO2 plots (smooth lines), derived from Norby

et al. (2003); Norby and Tharp (2008).

Root production and root standing crop were enhanced
in response to eCO2 for the young tree plantations
(although not for older trees at the Web-FACE site)
(Table I). There were large seasonal and inter-annual
shifts in the magnitude of root responses to eCO2; how-
ever, increased carbon allocation to the eCO2 roots has
been maintained through time across the four young
FACE studies. In addition, there was substantial evi-
dence of fine or coarse root distribution shifting deeper
(>15 cm) with the soil profile at three of the FACE sites
(Lukac et al., 2003; Iversen et al., 2008; Pritchard et al.,
2008); rocky subsoil limited depth of measurements at
Web-FACE, and there are no reports of distribution shifts
at Aspen-FACE.

Transpiration at ORNL FACE

Canopy transpiration of sweetgum trees in the ORNL
case study was sampled in years 2, 6, and 10. Inter-annual
transpiration remained fairly constant through time, with
intra-annual peak fluxes reaching 4Ð0–5Ð5 mm day�1

(Figure 1). The average response of plots exposed to
eCO2 during mid summer (June, July, and August)
was a 7–16% reduction in transpiration, depending
on year. eCO2 reduced annual canopy transpiration by
10–16% (Table III). Variation in annual transpiration and
eCO2 : aCO2 (E : A) response was attributable to wind
storms, drought, and other environmental stressors.

Canopy development and duration can provide some
insight into the dynamics of plant water use; however,
the magnitude of regulation may be overshadowed by
other processes. In 1999, maximum LAI reached 5Ð7–5Ð8
(Figure 1), similar to other non-drought years. In 2004,
a windstorm damaged the canopies of trees in both treat-
ments, as illustrated by the abrupt stabilization in LAI by
late May, one month earlier than other years (Figure 1).
In 2008, LAI was the lowest as the study was initiated,
driven by interactions between the 2007 drought and N
limitations. Inter-annual peak LAI for aCO2 was highly
conserved during eight of the ten years without extreme
events (5Ð60 š 0Ð04), while peak LAI for eCO2 plots
remained much more variable (5Ð85 š 0Ð17). Despite the
differences in external environmental conditions and their
effect on LAI, canopy transpiration was relatively con-
stant over the lifetime of the experiment; inter-annual
variation in both treatments was <10%.

eCO2 treatments consistently reduced canopy tran-
spiration by 10–15%, with the greatest effects on site
water balance occurring when water use was great-
est (Figure 2). For example, as transpiration in aCO2

plots reached 4 mm day�1, eCO2 plots used only
¾3Ð5 mm day�1. Similarly, there was little difference
in absolute transpiration between treatments as water
use declined below 1 mm day�1. The linear relationship
between eCO2 and aCO2 treatments was not significantly
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Table III. Seasonal and inter-annual patterns of measured and simulated canopy transpiration in a sweetgum forest exposed to
long-term CO2 treatments.

Year CO2

treatment
Canopy Transpiration (mm d�1) (mm yr�1) E : A E : A

Measured values May June July August September October Annual Annual Junuary–August

1999 Ambient 3Ð4 3Ð7 3Ð5 4Ð4 2Ð6 1Ð0 568 0Ð90 0Ð93
Elevated 2Ð8 3Ð4 3Ð2 3Ð9 2Ð5 0Ð8 511 — —

2004 Ambient 3Ð6 3Ð6 3Ð9 3Ð5 2Ð8 0Ð9 576 0Ð85 0Ð84
Elevated 2Ð9 3Ð0 3Ð2 3Ð0 2Ð3 1Ð2 487 — —

2008 Ambient 2Ð2 4Ð3 4Ð1 4Ð0 3Ð3 1Ð9 622 0Ð84 0Ð88
Elevated 2Ð0 4Ð0 3Ð5 3Ð4 2Ð5 1Ð2 522 — —

Modeled values
1999 Ambient 3Ð7 3Ð7 3Ð4 4Ð0 3Ð3 1Ð4 614 0Ð85 0Ð85

Elevated 3Ð1 3Ð2 2Ð9 3Ð4 2Ð8 1Ð1 521 — —
2004 Ambient 2Ð7 3Ð1 3Ð4 3Ð2 2Ð8 1Ð2 507 0Ð84 0Ð85

Elevated 2Ð3 2Ð7 2Ð9 2Ð7 2Ð3 1Ð0 428 — —
2008 Ambient 2Ð5 4Ð2 3Ð9 3Ð7 3Ð2 1Ð6 589 0Ð87 0Ð87

Elevated 2Ð1 3Ð7 3Ð4 3Ð2 2Ð8 1Ð4 511 — —

Annual fluxes include values from April to November during leaf development and leaf abscission. Transpiration ratio of eCO2 to aCO2 (E : A) is
calculated annually and for mid-season fully developed canopies.

different through time. A linear regression across years
suggests a consistent 14Ð6% reduction in transpiration
from eCO2 plots (R2 D 0Ð93, n D 596).

Modelling ORNL FACE

Simulated inter-annual LAI peaked at ¾4 for eCO2 and
between ¾4 and 4Ð5 for aCO2. In contrast, measured
maximum LAI ranged from 4 to 6 for eCO2 and from
4 to 5Ð8 for aCO2. The shape of the simulated LAI
curve differed from observations, increasing throughout
the summer to a peak in mid-September (Figure 3), two
months later than the observed peak (Figure 1).

As expected, once the model was parameterized,
the simulated canopy transpiration tracked measured
transpiration quite well (Figure 4). Seasonal initiation of
transpiration, peak values, and response to environmental
conditions were similar for measured and modelled
values. There was a two week delay in the simulated
seasonal decline in transpiration; measured transpiration
declined by day of year (DOY) 245, while simulated
transpiration declined by DOY 260 (Figure 5). Even so,
the model (driven by day length) accurately terminated
transpiration in early November.

As the model was projected forward through time, sim-
ulated canopy transpiration was tightly grouped around
actual measured values (Figures 4 and 5). The correla-
tion between simulated and measured values was main-
tained through 2008, especially from June to August
(DOY 152–243) when simulated transpiration was 96
and 98% (eCO2 and aCO2, respectively; s. e. š 1%)
of measured transpiration. In May, 2008, the simula-
tions overestimated transpiration by 8% (eCO2) and 13%
(aCO2). In 2008, from September to October, the simula-
tions underestimated transpiration for aCO2 by 5%, and
overestimated transpiration for eCO2 by 16% (Figure 5).

Biome-BGC was able to partition fluxes among
different ecohydrological components on the basis of

site water balance equations linked to simulated esti-
mates of water flux. Precipitation inputs were bal-
anced by evapotranspiration and soil water flow out-
puts. Water lost from the system via transpiration
was a large component of simulated site water flux
(Figure 6). The significant, long-term reduction in simu-
lated eCO2 transpiration agreed with the measured val-
ues through time. As a result, simulated water yield
(surface runoff for saturated conditions and subsurface
flow and drainage for unsaturated conditions) was sig-
nificantly enhanced (¾16%; s. e. š 3%) by eCO2.
Potential water yield was 42 and 48% (aCO2 and
eCO2) of annual precipitation at the site. The simu-
lated eCO2 ecosystem increased potential water yield
by ¾75 mm annually (s. e. š 10 mm), released dur-
ing the growing season. Treatment differences in inter-
annual values of outflow (eCO2 –aCO2) ranged from 58
to 137 mm, except for the year 2007 in which there
was no difference in modelled outflow. This was an
extraordinarily dry and hot year, which led to prema-
ture leaf senescence across the stand (Warren et al.,
In Review), and Biome-BGC was not able to accu-
rately model transpiration—values were overestimated
by 20–40%.

DISCUSSION

Regulation of stand water use

Our studies show, both experimentally and through
the use of a model, that reductions in the stomatal
conductance due to eCO2 can affect leaf, plant, and
ecosystem water use. The ecohydrologic consequences
are manifested in increased site water yield. In addition,
reduced ecosystem transpiration under eCO2 will reduce
regional-scale atmospheric humidity and thereby enhance
the VPD (and driving force for water loss) between
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Figure 2. Measured canopy transpiration of sweetgum forest plantation
FACE plots exposed to ambient or elevated atmospheric CO2 across
multiple years. Values below the solid 1 : 1 line represent greater

transpiration in aCO2 plots than in eCO2 plots.

leaves and the atmosphere. Projected increases in air
temperature will further increase VPDs. These feedback
processes could increase transpiration and reduce water
use efficiency (as grams of C uptake per gram of
H2O release), although under persistent drought and
heat, stomatal conductance and stand water use slowly
decline. In addition, there is an evidence of much greater
reduction in water use in eCO2 plots at ORNL FACE
during extreme heat and drought events, especially for
dominant trees whose measured sap flow declined by
60% relative to aCO2 trees (Warren et al., In review).
Under such extreme events, the Biome-BGC model used
in this study was not able to simulate measured values

of transpiration (overestimation; data not shown), which
necessitates further model refinement and sensitivity to
extreme climate conditions.

Water use through trees is further regulated by
soil–root–leaf conductances associated with the char-
acteristic forest structures—root deployment, xylem
anatomy, tree height, branching patterns, and leaf area
(Waring and Running, 1998). These structural features
can change during stand development and can be altered
by eCO2, so it is important that assessments of the effects
of eCO2 on forest water use recognize the importance
of stand structure, including its plasticity and temporal
dynamics. Across the FACE sites compiled here, stage
of stand development appeared to have the greatest influ-
ence on the response of canopy transpiration to eCO2,
where eCO2 increased LAI and stand water use in the
young rapidly growing plantations, while eCO2 resulted
in little change to LAI and substantial reductions in stand
water use in the older, nutrient-limited stands.

As trees age and grow taller, structural and physio-
logical changes can occur that affect water use. Stomatal
conductance, photosynthesis, specific leaf area, and leaf-
specific hydraulic conductance often are lower in taller
trees, and hydraulic limitations can increase with tree
height (Ryan et al., 2006; Domec et al., 2008). The C : N
ratio of trees often increases during stand development
as wood volume increases and labile N is incrementally
sequestered into longer-lived pools (e.g. wood), which
can reduce productivity and leaf area (Ryan et al., 1997;
Johnson, 2006). These factors can lead to a decline in
overstory transpiration during stand development, but a
decline in total ecosystem evaporation may be offset by
enhanced evapotranspiration from the soil and under-
storey vegetation (Delzon and Loustau, 2005). At the
ORNL FACE site, there was little evidence for enhanced
understorey LAI over the course of the study across treat-
ments; however, there was an increase in the woody
biomass in eCO2 plots, which could change soil–plant
evapotranspiration due to altered understorey vertical
structure (Souza et al., 2010).

LAI and canopy development

LAI increases rapidly as tree seedlings are established on
a site until crown closure occurs, after which LAI peaks
and may slowly decline. The time required to attain peak
LAI during stand development depends on the availability
of environmental resources and stand density. In the
ORNL sweetgum plantation, LAI had already peaked
when the CO2 treatments were initiated 10 years after
plantation establishment. eCO2 can accelerate canopy
development of young trees prior to canopy closure and
thereby alter other processes, including water use, that
depend on leaf area. Indeed, eCO2-stimulated canopy
development and LAI at the two young rapidly growing
stands at Aspen-FACE and POP/EuroFACE, suggesting
that the resources other than CO2 were not limiting,
and resulted in greater stand water use in eCO2 plots.
However, such observations are confined to young stands
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Figure 3. Simulated daily canopy transpiration in a sweetgum forest plantation exposed to ambient or elevated atmospheric CO2 across multiple
years based on an ecosystem process model (Biome-BGC), and seasonal patterns of stimulated leaf area index (LAI) (smooth lines).

and are not overly informative in terms of water use by
fully developed forest stands (Norby et al., 1999).

Even with a closed canopy, the ORNL sweetgum trees
displayed large inter-annual variation in LAI, which was
differentially affected by the CO2 treatments. Year–year
variation in LAI of CO2-enriched plots may increase
sensitivity to other site resources, suggesting that the
eCO2 may create transient imbalances in resources or
push the stand towards thresholds in resource availabil-
ity. Recent evidence from the ORNL site does indeed
reveal reduced eCO2 stimulation of NPP through time,
attributable to reduced soil N availability that is linked
to enhanced N sequestration in NPP biomass and soil
pools (Norby et al., 2010). Despite transient or persis-
tent shifts in eCO2 : aCO2 of NPP or LAI, there has not
been a substantial change in the E : A transpiration rates
(0Ð84–0Ð90), which is likely owing to the plasticity of
stomatal response.

Roots and soil water extraction

Woody ecosystems exposed to the eCO2 often increase
root production and root standing crop (Table I) and shift
root distribution deeper into the soil profile (Iversen,
2010), both processes that could alter water extraction
dynamics. Access to deep water is important in many
water-limited ecosystems, but the relationship between
fine-root distribution and water uptake is not clear

and remains an important need for models (Jackson
et al., 2000). Root distribution was not well correlated
to patterns of water extraction in several coniferous
forests under drying conditions, as a minor fraction of
roots at deeper depths seasonally provided the major
fraction of water uptake (Warren et al., 2005). Thus,
knowledge of vertical patterns of water extraction across
the season may be more important than knowledge of
root distribution.

Quantification of water content in only the upper soil
(¾0–20 cm) at the five forest FACE studies thus may
not necessarily reflect root water extraction dynamics
as affected by CO2 treatments, and may further be
confounded by spatial variation in water content due to
lateral water movement across the landscape (Schäfer
et al., 2002). Under moderate drought, there was reduced
sap flow in mature deciduous trees exposed to eCO2,
which led to a slower decline in upper soil moisture
than in aCO2 plots; however, treatment differences in
water content at 10 cm were not apparent during a more
severe drought (Leuzinger and Körner, 2007), suggesting
differences in deeper root water extraction patterns.
In addition, eCO2 significantly increased tree growth
and sap flow in the mixed Populus tremuloides, Betula
papyrifera, and Acer saccharum Aspen-FACE study, yet
there was no decline, or even an increase in upper soil
water content (Uddling et al., 2008).
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Figure 4. Canopy transpiration from ambient and elevated CO2 plots
through time as scaled from sap flow analysis (measured) and from

parameterized modeling using Biome-BGC (simulated).

SOM and soil water availability

Soil water availability might also be increased by eCO2

treatments due to the increased SOM or surface lit-
ter inputs that reduce evaporation (Schäfer et al., 2002;
Uddling et al., 2008). There is an evidence for increased
litter build-up in the forest floor under eCO2 at Duke
FACE (Lichter et al., 2005) and POP/EuroFACE (Hoos-
beek and Scarascia-Mugnozza, 2009), and there is evi-
dence for increased SOM under eCO2 in the uppermost
soil layer (0–5 cm) at ORNL FACE (Jastrow et al.,
2005). Analyses of deeper layers (e.g. 0–15 cm) have
not been able to show significant increases in SOM (Jas-
trow et al., 2005; Lichter et al., 2005), despite measured
increases in root production and turnover at depth at these
two sites (Iversen et al., 2008; Pritchard et al., 2008). If
at a longer timescale, eCO2 treatments resulted in a dou-
bling of SOM in upper soil at the ORNL FACE, Duke
FACE, or Aspen-FACE sites (e.g. 1Ð5–3Ð0% SOM), field
capacity (water content at �0Ð033 MPa) could poten-
tially increase by up to 12% based on equations in Rawls
et al. (2003) using upper soil C and textural data (Dick-
son et al., 2000; Jastrow et al., 2005; D. Todd, unpub-
lished; Oh and Richter, 2005). At the ORNL FACE site,
eCO2 has increased SOM in the 0–5 cm soil layer by
¾10% over five years compared with aCO2 (Jastrow
et al., 2005), correlating to ¾1% increase in modelled

field capacity for this site (i.e. 0Ð341 and 0Ð345 m3 m�3,
for aCO2 and eCO2). As SOM accumulation is rela-
tively slow and declines with depth in the soil profile, the
resulting impact on soil water retention during the course
of these FACE studies is ecologically minor for forest
species that rely on water extraction throughout the soil
profile, although, across multi-decadal timescales, eCO2-
enhanced litter production may accelerate soil C accrual
and reduce surface soil evaporation, and thus improve
inherent water retention as forest soils develop, especially
for previously cultivated and degraded soils low in SOM.

Simulations and model performance

Simulated LAI was up to 20% (aCO2) to 45% (eCO2)
lower than the measured values and quite stable through
time. Measured LAI was dramatically reduced during
two extreme years (2004 windstorm, 2008 post-drought);
however, simulated LAI was not able to model these
events, resulting in simulated LAI actually much closer
to measured LAI in these years (within 1% aCO2 or
5–15% eCO2). Even though the simulations failed to
accurately model seasonal or inter-annual dynamics of
LAI, they were able to predict the relative magnitudes
of transpiration as affected by CO2. These results reveal
both the relative importance of LAI to the model, as well
as the potential for improvement in other model processes
linked to transpiration. Indeed, because of the dampened
peak LAI, the model is less sensitive to LAI than other
process-based models (Siqueira et al., 2006).

Simulated transpiration was strongly correlated to mea-
sured transpiration during the peak summer months,
but overestimated in spring, and either underestimated
(aCO2) or overestimated (eCO2) in autumn. These devia-
tions could have significant impacts on seasonal patterns
of water availability and net carbon uptake by initially
accelerating seasonal water use that could induce sea-
sonal drought earlier than might be expected. For the
eCO2 stands, this effect would be increased in autumn,
potentially offsetting the benefits of eCO2-reduced tran-
spiration to net water balance. Failure to properly simu-
late timing of leaf out in the spring and senescence in the
fall, and a lack of sensitivity to stress events can have a
large impact on seasonal water use. Future studies should
focus on these areas of uncertainty.

The C : N ratios, C and N allocation parameters, and
specific leaf area were not dynamic parameters in the
model, therefore the general mechanisms and dependen-
cies causing shifts in these parameters over time are still
not clear. Although the trends in these parameters appear
linear over the course of this 12-year observation period,
a continuation of the same trends into older developmen-
tal stages cannot be anticipated. Previous studies applying
this model across forest chronosequences have concluded
that the introduction of explicit age-class dynamics would
improve model performance (Law et al., 2001, 2003),
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Figure 5. Comparison between measured and simulated daily canopy transpiration in a sweetgum forest plantation exposed to ambient or elevated
atmospheric CO2 across multiple years (1999, 2004, and 2008).

Figure 6. Simulated annual water flux components for the sweet-
gum forest plantation FACE plots exposed to ambient (a) or elevated
(e) atmospheric CO2. Values represent mean ecosystem response from
1998 to 2008 (š s. e. across years), based on parameterization to 1999

measured values and a 10 000 year spin-up cycle.

and our results support that finding. To assess the water
budget during the ORNL FACE experiment, it was most
feasible to use mean values for the measured ecophysi-
ological parameters for two reasons. First, we were only
interested in the 12 years of the experiment—a relatively
short application time for the ecosystem model Biome-
BGC. Second, as long as LAI remains at a reasonably

high level, the water budget is not strongly influenced by
shifts in these ecophysiological parameters.

In this regard, it should also be mentioned that
additional allocation of biomass to the root system as
stipulated by model parameters, and as observed for the
eCO2 treatment, does not provide any benefit for the
simulated forest as neither nitrogen availability nor water
uptake depend on the root biomass. Biome-BGC does
not explicitly include root distribution within the vertical
soil profile or rooting depth. Rather, the model uses the
user-parameterized effective soil depth to describe total
water availability from the system. The model logic is
based on the assumption that tree roots will exploit the
entire soil profile as necessary to provide a minimal
water supply during dry periods. Maximum rooting depth
is not assessed in many studies, but can be effectively
modelled on the basis of potential evapotranspiration
and knowledge of soil water distribution (Schenk, 2008).
However, it should be kept in mind that modelling soil
and rooting depth may be limited to individual species.
In a mixed Douglas-fir–western hemlock forest, there is
species specificity of the depth of active rooting and water
extraction (Meinzer et al., 2007) that would complicate
model assumptions.
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CONCLUSIONS

The measurement, modelling, and synthesis activities
conducted in this study reveal that several important
aspects of site water balance and ecosystem function
are likely to be impacted by rising atmospheric CO2

in the coming decades. Ecohydrological implications of
ecosystem response to rising CO2 will be site specific
and temporally dynamic, dependent on stand develop-
ment and successionary state. In the case of temperate
deciduous forests, and barring effects of eCO2 on LAI,
reductions in canopy transpiration and stand water use
due to direct effects of CO2 on stomatal conductance will
be reflected in increased soil water content and poten-
tial water yield. Our results support the expectation that
large-scale regional soil and climate limitations to eCO2

enhancement of forest productivity may lead to increased
surface runoff directly through reduction in stomatal con-
ductance (Betts et al., 2007). Increased availability of
water within a mixed species forest will have conse-
quences for how individual trees and tree species respond
to low soil water potentials during periods of water-
deficit stress and for patterns of plant–plant competition
for available water resources. To date, such observa-
tions have been beyond the scope of our experiments,
although next-generation gap or biogeography models
could be used to explore possible implications. Future
simulations might also be extended to shifts in temper-
ature and precipitation associated with climate change,
including extreme events that are projected to increase in
frequency. However, empirical multivariate studies nec-
essary for validating and parameterizing more complex
simulations (Luo et al., 2008) are largely lacking, and
may be difficult to assess due to interactive responses.
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